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1. An example

In this section we discuss a very simple problem. Consider the scalar initial
value problem

ey = ay+et, t2>0,
y(0) = wo. 1.1)

Here € > 0 is a small constant and a = a1 + ia2, aj,a2 real, is a complex
number with |a| = 1. We can write down the solution of (1.1) explicitly. It
is

y=9°+9F,

where
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is a solution of the homogeneous equation
ev' = av.

v varies on the time scale ‘1’ while yF varies on the much faster scale 1/c.
We say that 35, yF vary on the slow and fast scale, respectively. We use
also the phrase: 5 and yF are the slow and the fast part of the solution,
respectively.

There are three different possibilities.

Case 1. a; >> ¢. In this case y¥ grows rapidly and dominates the solution.
We are not interested in this case.

Case 2. a; > —¢. Now yF decays rapidly. Therefore, outside a boundary
layer, the solution of (1.1) is essentially represented by y5.

Case 3. a; = 0. For general initial data both scales are present for all times.

However, if

1
=0,
y0+a—ie

then y¥ = 0 and the solution varies on the slow scale only.

In this survey article we shall mainly discuss the third case.

In applications like meteorology, oceanography and plasma physics one is
often only interested in solutions, which vary on the slow scale. However,
the data are such that the fast scale is present anyway. Therefore we shall
develop a theory, which leads to a systematic way to ‘initialize’ the data
such that the fast scale is not excited. This theory is based on a very simple
principle. If y(t) varies on the slow time scale, then

d“y(t)/dt* ~ O(1), v=0,1,2,...,p,

where p > 1 is a suitable number. Therefore our principle as follows.
Choose the initial data y(0) = yo such that at t =0

d“y(0)/dt* ~ O(1), v=0,1,2,...,p. (1.2)

We shall call this procedure the bounded derivative principle.

Let us apply the principle to our example. We think of £ as a small
parameter, which approaches 0, and we want to choose the initial data such
that the derivatives at ¢ = 0 are bounded independently of ¢.

dy(0)/dt is bounded independently of ¢, if and only if

ay(0) +1=0(e), ie. y(0)=-1/a+ O(e).

Thus the initial data are determined up to terms of order O(¢).
For the second derivative we have

€2y’ = eay’ + ee't = a’y + ae't + ice.
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Therefore d2y(0)/dt? is bounded independently of ¢, if and only if
y(0) = —1/a — ie/a? + O(e?).

Thus the initial data are determined up to terms of order O(e?).

An easy calculation shows that the initial data are determined up to terms
of order O(e?), if and only if the first p derivatives are bounded indepentently
of e.

Earlier we have shown that y¥ = 0, if

1 1 X fie\”
y(o)——a—ie_—ayz__.%(;> '

The bounded derivative principle gives us the first p terms in the power
series expansion.

We want to prove that for general nonlinear systems the bounded deriva-
tive principle lets us determine the slow solution to any order.

The bounded derivative principle is very much connected with asymptotic
expanstions. To discuss the connection we consider the slightly more general
equation

ey = ia(t)y+ f(1),
y(O) = Yo, (1.3)

where a(t), f(t) € C>®(t) and a(t) > ag, ap = constant > 0.

First we shall show that the bounded derivative principle is valid. The
construction will be generalized to systems in the next section.

If y(t) is a slow solution, then

Y(t) = po(t) =:1 f(t)/a(t).
This suggests the substitution
y(t) = po(t) + i (?)- (1.4)
Introducing (1.4) into (1.3) gives us
ey = ia(t)y +efi(t), fi(t) = —pp(t)s
y1(0) = w10 =: yo — ©0(0). (1.5)

(1.5) is of the same form as (1.3). However, the forcing is reduced to order
O(e). We can repeat the process. After p steps we obtain

p—1
y(&) = Yp_1(t) + 4p(t), Pp-1(t) = D ;1) (1.6)
3=0

where y,(t) solves

ey, = ia(t)yp +ePfp(t),
¥p(0) = yo—¥p-1(0). (1.7)



104 HEeINz-OTTO KREISS

The solution of (1.7) can be written as
Y=7+7,
where % is the forced solution satisfying
ey = ia(t)yg+ePfp(t),
g0 = 0, (1.8)
and 7 solves
ey = ia(t)y,
700) = Yo (1.9)
By Duhamel’s principle
|d’F/dt’| < constant x P91
in any finite time interval 0 < ¢t < 7. Thus 7 has p — 1 derivatives bounded
independently of €.
Now apply the bounded derivative principle to (1.9). An easy calcula-

tion shows that 7(t) and therefore also y(t) have p — 1 derivatives bounded
independently of € at t = 0 if and only if

3(0) = O(eP™), ie. y(0) =4p-1(0) + O(e”™). (1.10)
If (1.10) holds, then %(t) and therefore also
Y(t) = Yp-1(t) + F(2) +F(t) = Pp-1(t) + O(P™), (1.11)

have p— 1 derivatives bounded independently of € in any finite time interval.
This shows that the bounded derivative principle is valid.

(1.10) and (1.11) also show that equation (1.3) has essentially a unique
slow solution and that 1,_;(¢) represents the first p terms of its asymptotic
expansion. One can determine the initial data either by the bounded deriva-
tive principle or by calculating the asymptotic expansion in a neighbourhood
of t = 0 and use 9,_1(0) as initial data.

We have calculated the asymptotic expansion by substitution. Instead we
can also determine it by the iteration

E(y(n_l))’ = ia'y(n) + f, y(-l) = 01 n= 0’ 1’ 27 e
An easy calculation shows that
y(p) = Yp.

Our construction depends heavily on the assumption that a(t), f(t) have
derivatives of order O(1) and that a(t) > a¢ > 0. If, for example,

0 for0§t<%

f(t)={1 fortZ%,
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then the asymptotic expansion tells us that the slow solution is given by

0 foro<t<i
y(t) = ;2(;7+0(e) fort > 1.

Thus the solution of (1.3) with initial data y(0) = 0 will become highly
oscillatory for t > 1. Correspondingly, if
a(t) = (t —to)as(t),

then a solution, which is slow for ¢t < tg, becomes in general highly oscillatory
for t > tp.

2. Systems of ordinary differential equations
2.1. Form of the systems and assumptions

In applications the systems are real and often have the form
1
wy = EAl(t)w + fi(w,t), 0<e<eq, (2.1)

i.e. the large part of the right-hand side is a linear function of w. We assume
that A;(t) has constant rank, i.e. there is a smooth transformation S(t) such

that

S1(t) AL (£)S(t) = (A(()”) 8) det A # 0.

Changing the dependent variables accordingly, we obtain a system of the
form

ey = (AQt)+eClv,y.t))y + f(v,t), 0<e<eo,
o= g(v,y,t), (2.2)
where
y(t), f(v,t) €R™, v(t),9(v,y,t) €R", A(t),C(v,y,t) € R™™.

We want to show that the results of the previous section can be generalized
to systems (2.2). We follow here closely the presentation in Kreiss and
Lorenz (1991). (See also Kreiss (1979) and Sacker (1965).)

To be precise, we shall use the following terminology

Definition 2.1 Let w(t, ¢) denote a function defined for 0 < ¢t < T, 0 <e <
£9. We say that it is slow to order pin 0 <t < T if w € CP(0,T') and if

sup max |Fw/dt| <0, j=0,1,...,p. 2.3
0<€£€005tg| Lid J P (2.3)

We say that w is slow if (2.3) holds for any p.

Our main assumption is
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Assumption 2.1
(i) For all t >0

A(t) + A*(£) <0, det A(t) #0.
(ii)
A(t), A71(t),C(v,y, 1), f(v,1),9(v,9,t)

are C*-functions of their arguments with bounded derivatives. They may
also depend on € but we assume that the bounds are uniform in €.

2.2. The bounded derivative principle and asymptotic expansions

We shall separate the fast and slow variables by a suitable substitution. If
y(t), v(t) is a slow solution, then ey’(t) = O(e) and to the first approximation

y(t) = —AT () f(v,0).
This suggests the substitution
y(t) = ®o(v,t) + 11(t), ®o(v,t) = —A71(t)f(v,1).
Introducing (2.3) into (2.2) gives us
ey1(t) + (%o (v,t)/0v)g(v, B¢ + y1,t) + ePot(v, t)
= A(t)yl (t) + EC('U, q)o + y1, t)(@o(’v, t) + % (t))
vl(t) = g(v7 (I)O + ylvt))
ie. -
eyr = (A@t)+eCi(v,41,t)y +efi(v, )
’U, = gl(v’ Y1, t)’ (2'4)
where
fl (’U, t) = —(3‘1’0(’0, t)/av)g(va @0’ t) - q)(}t(v’ t)

Thus y; (¢) satisfies a differential equation of the same form as y(t) but the
forcing is reduced to order O(e).
We can repeat the process and obtain

Theorem 2.1 One can construct slow functions ®¢(v,t), ®;1(v,t),... with
the following properties. If one substitutes
y(t) = Yp-a(v,t) +yp(t),
'lp(’U, t) = <I)O(vv t) + sél(v’ t) +oo Ep_lq) —l(v’t)’
into (2.2), then y,(t), v(t) satisfy a system
sy;, = (A(t) + SCp(va ypa t))yp + e”fp(v, t)

/

v o= gp(v,yp:t)’ (2.5)
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where Cp, fp, gp have uniformly bounded derivatives with respect to all vari-
ables. Differentiating (2.5) we obtain immediately

Theorem 2.2 y,(t), v(t) and therefore also y(t), v(t) are slow to order p in
any fixed time interval 0 <t < T, if and only if
yp(0) = O(eP), ie. diy,(0)/dt! = O(eP~7), j=0,1,...,p. (2.6a)
(2.6a) holds if and only if for the original variables
d’y(0)/dt’ = O(1) for j=0,1,...,p. (2.6b)
Thus the bounded derivative principle is valid.

As in the previous section we can use the last theorem to initialize the
data, i.e. for a given vy = v(0) find yo = y(0) such that the solution is
slow to order p. We find the relations by enforcing (2.6b). Essentially we
have to calculate 1,_1(v(0),0). The process can become quite complicated.
Therefore it is often easier to determine the relations by iteration. We have

Theorem 2.3 Let y(0)(t) = 0. p iterations of
e Y)Y = (A(t) +Cp(o™, y™, t)y™ + f(vM,1),
™) = gw™,y™,t), v™(©0)=vo, n=0,1,...,p—1,

determines a solution of (2.2), which is slow to order p and which, for a
given v, is unique up to terms of order O(e?).

We can solve this iteration numerically in a neighbourhood of ¢ = 0 and
use the resulting y~1)(0) as initial data to solve the system (2.2) in large

time intervals.
Under the following additional assumptions the estimates can be extended

to all times.
Assumption 2.2 There is a constant 8 > 0 and an integer go > 1 such that

Coo (v, 9, ) + Cy (v, 9, t) < =Bt

for all v,y,e.
(For the proof see Kreiss and Lorenz (1991).)

2.8. Eristence of a slow manifold

Theorem 2.2 tells us that we can choose y(0) as a function of v(0) such that
the resulting solution is slow to order p. In general the relationship between
y and v depends on p. If we want the solution to be slow to order p+ 1, then
we have to change the relation by terms of order e?.

For practical purposes this result is completely satisfactory. However, an
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interesting mathematical question is: Can we determine y(0) as a function
of v(0) such that the resulting solution is slow to any order?

There is one trivial case, where this is so. If f(v,t) and all its partial
derivatives with respect to v and t vanish at ¢ = 0, then the initial data

¥(0) =0, v(0) = v

guarantee solutions, which are slow to any order. Also, for given vy the slow
solution is unique to any order in €.

In Kreiss and Lorenz (1991) we have reduced the general case to the above
by constructing a substitution

y=8(v,te) +§, 0<t<T, @7

such that f(v,t) = 0. We have also given conditions such that the substi-
tution exists for all times. (See also Sacker (1965), Kopell (1985), Fenichel

(1985).)
(2.7) shows that the slow solution forms a manifold represented by
y = ®(vt,e)
Vo= g(v,yt) (2.8)

2.4. Interaction between the fast and the slow scale
Consider the system (2.2) and choose the initial data by
v(0) =vo, ¥(0) = ®(vo,0,¢)
to obtain the slow solution v5(t),y5(t). Now perturb y(0) and consider
v(0) = vy, y(0) = ®(vo,0,¢)+6

and denote the resulting solution by vs(t),ys(t). In general the fast scale is
excited and y5(t) will be of order O(|6]). We want to show that the effect
on the slow part of the solution is much smaller than |6].

Theorem 2.4 Let 0 <t < T be a fixed time interval. For sufficiently small
€, |6] there is a constant ¢y such that
[v5 () — vs(t)) < coleld] + 16]%).

Proof. We shall only indicate the proof. For more details see Kreiss and
Lorenz (1991). Without restriction we can assume that the system (2.2) has
the form

ey = (A(t) +eC(v,y,1))y
) (2.9)
Otherwise we perform the substitution (2.7). The initial data for v5(t), y5(¢)

are
v5(0) =vw, 350)=0, ie (1) =0,
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and for vs(t),ys(¢)
vs(0) = vo, ys(t) =6.
To first approximation ys(t) satisfies
eys(t) = (At) +C(¥5,0,))ys, ie. |ys| = O(6),

and w = v° — vs solves
v = (99(+°,0,t)/8v)w + 8g(v°,0,t)/Byys(t),
w(0) = 0. (2.10)
Therefore

w®) = [ S09050,6/00us(e) de
= ¢ [ 5(,)(090%,0,)/0u)(A +<C)45(6) de.

Here S(t,£) is the solution operator of the homogeneous equation
v = (9g(v®,0,t)/0v)u.

Integration by parts shows that the last integral is of order £§. Also, we
have neglected only terms of order O(e§) + O(62) and therefore the theorem
follows. O

The last theorem is important in applications. Often one is only interested
in slow solutions. In these cases one has to prepare the initial data in such
a way that the fast scale is not excited. Practically one can never remove
the fast scale completely. The theorem says that the effect of the fast scale
on the slow scale can be neglected, provided a moderate amount of data
preparation has been performed. Also, the fast scale can be removed by
post-filtering.

3. Numerical methods for ordinary differential equations
3.1. An example
We consider equation (1.3)

ey = ia(t)y+f(t)
y(0) = yo- (3.1)

To begin with we want only to calculate the slow solution. There are a
number of possibilities.

Asymptotic expansion, i.e.

v =T+ = (L)« v o, (3.2)
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Difference approximation. If we are willing to use a time step k < ¢,
then any of the standard explicit techniques can be used. However, we want
only to calculate the slow solution and therefore we only want to resolve the
slow scale, i.e. we want to use a time step k with ¢ « k < 1. Therefore
we have to use an implicit method. It has to be stable on the imaginary
axis and therefore the order of accuracy of a stable multi-step method is
restricted to one or two. We shall discuss the implicit Euler scheme and the
midpoint rule.

Let k > 0 denote the time step, t; = jk, j = 0,1,..., the grid and denote
by u; = u(jk) the values of u on the grid. Then the implicit Euler scheme
has the form

E(Un+1 — Upn) = k(ian+1Un+1 + fnt+1). (3.3)
As for the continuous case we can derive an asymptotic expansion. Let
Up = ﬁ + Gy,
Qn

Then 1, is the solution of
E(Uns1 — i) =k (ian+1ﬁn+1 —iD_ (-‘éli-l-)) , D_gp41=: 9n+1 — gn.
an+1 k

Repeating the process we obtain an asymptotic expansion of the slow dis-
crete solution

S ep (ﬁ) +0(e2). (3.4)
an Qp Qn
Thus
S Sy _ € (f (tn) ) ! ( f n) 2
th)—uy| = — —-D_(=—}|+ 0Ok
Iy ( ﬂ) nl laﬂl a(tn) an (6 )
= Ofek).
If we have chosen the initial data by
v =°(0), (3.5)
then the fast part of the discrete solution satisfies
1

v = Yo — us(O) = O(Ek).

Thus the fast part of the discrete solution is, in general, not zero. However,
|| < and therefore

v, = K"y (3.6)

shows that v, converges rapidly to zero regardless of how we choose the
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initial data wg. Thus the implicit Euler method will always determine the
slow solution, if k& > €.

The midpoint rule is given by

k.. .
5(un+l - 'u'n) = E(lan-f-lun-f-l + fat1 +iapun + fn) (37)

Now the discrete slow solution satisfies
uS = y5(tn) + O(ek?). (3.8)
The fast part is the solution of
Untl = KUp, K= %—i—.—i—i—:% = —exp (?) +0 (-z—:—) &~ -1,
vw = up—up. (3.9)
In this case the fast part will not be damped. Instead it will oscillate like a
+1 wave. If we choose ug = y°(0), then vy = O(ek?) is small.

The following local smoothing procedure can be used to decrease the am-
plitude of the fast wave, even if vy is large. (See Lindberg (1971).)

1  Starting with up calculate u;, ua.
2  Determine new initial data at ¢ = k by

U] = uy + ;i'(’uz - 2uy + uo).
Repeat the process starting at ¢t = k. We have
uj = u,s- + 17 (ug — uf).

Therefore

U = uf + %(ug - 2u§ + ug) + (k+ -i-(n - 1)2)(u0 - ug)
= u? + O(kz) + O(e/k)(uo — ug)

Thus the amplitude of the fast solution has been reduced by a factor O(e/k).
Generalizations are treated in Majda (1983).

Richardson extrapolation. As we have said in the beginning: If ¢ is

very small, then it is uneconomical to use an explicit method. However,

in applications the systems can be very large and it can therefore be quite

expensive to solve the linear systems connected with the implicit methods.

We know that the slow solution can be expanded into an asymptotic series

in €. )
’uﬁ(k) =&y +¢eP; + 0(62).
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Therefore we can use Richardson extrapolation. We change € to a more
moderate value €* >> € and calculate
uS(e*) = ®o+€"® +O(*?)
ud(2e*) = ®o+2e*®; + O(e*?)
Then
B = ud(2e*) —ud(e*) + O(e*?)
B0 = un(e®) — (un(2e”) —un(e)) + O(?),
ie.

uS(e) = 2u3(e") - uS(26) + S (uf (26") — ul(e") + O(e™?).

For moderate values of €* we may be able to use an explicit method. The
main difficulty is that the initial data have to properly initialized, because
Richardson extrapolation does not work for the fast part of the solution.

Until now we have concentrated on calculating the slow solution. If we also
want to calculate the fast part of the solution, then we have two possibilities.

1  Use a difference method and resolve the fast scale, i.e. choose k < &.
2  Solve the homogeneous equation

ev) = ia(t)v,
v(0) = o,

analytically:

o(t) = exp [(é) /0 " a(6) dg] 2(0).

3.2. Slow solutions of fast systems

We consider systems

ey = Alty+f(t)
¥(0) = o, (3.10)

where A(t), f(t) satisfy Assumption 1.1. We can calculate the slow solution
in the same way as for Example 3.1.

Asymptotic expansion.
¥o(t) = —AT () f (1) + AT (AT DS () + OEP).
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Implicit difference approximation. The implicit Euler scheme has the
form

s(un+1 - un) = k(An+1Un+1 + fn+1)'
For the slow part of its solution we have the asymptotic expansion
up = —A7 o + €A D_(A71 fn) + O(E?),

and the fast part satisfies
k -1 € ,_ € ,_
Unt1 = (I - EA"H) Up = "EAnwlLl (I - 'EAn-}-l) Up.

Thus, if € € k, then
€

% a1 <1

and v,, converges rapidly to zero, i.e. the implicit Euler scheme gives us the
slow solution regardless of the initial data.

The midpoint rule. The same arguments as in the scalar case show that
the slow part of the solution can be described by an asymptotic expansion
and that the fast part becomes a +1-wave, which can be damped by a local
smoothing.

Richardson extrapolation. The possibility of Richardson extrapolation
depends only on the existence of asymptotic expansions. Therefore we can
also use it here.

3.8. Slow solution of the full system

We consider the system (2.2). All the methods discussed in the previous
section can be generalized.

Asymptotic expansions. By Theorem 2.3 the first term (v(®,3©@) is the
solution of

0 = A®Y9 +£(0,1)
@) = g(@,40)
v90) = v (3.11)
Higher order terms are obtained by the iteration
e@Y) = AUtV +eClv,yD, 11y + f(v,1)
vUrD(0) = . (3.12)
The differential equations can be solved by any standard method.
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Implicit difference methods. We can use the backward Euler scheme or
the midpoint rule for the complete system. However, for less work we obtain
better accuracy, if we apply these schemes to the fast part (y-variables) only.
For example, we can use the Euler scheme for the y-variables and a stable
Adam’s method for

5(gn+1 - gn) = k(An+1 + ECn+1)gn+1 + fn+1)v Jot1 = f(6n+1’tn+1)a

Unt1 = Tn+ D Bibn—jr Gn-i = 9(Bn—j»Tnjstn—j)- (3.13)
J

We can also develop the solutions of (3.13) into an asymptotic expansion
and compare it with (3.11) and (3.12). This results in a satisfactory error
estimate. However, the stability of the method has not been investigated.

In applications the system has often the form (2.1) and one uses a com-
bination of leap-frog and the midpoint rule to solve it, i.e.

- - k - _ :
Wng1 — Wn-1 = E(Al n+1Wnt1 + A1 nWn) + 2k f1 5. (3.14)

We shall give a truncation error and stability analysis of the method.
Let w(z,t) be a slow solution of (2.1) and introduce it into (3.14). We
obtain

W41 — Wn—1 — %(Al n+1Wn+1 + A1 nWn) — 2k f1n
= Wp4l1 — Wp-1— k(w:1+1 +w, _1) + k(fl n+l + fl n-1-—" 2f1 n)
= ck3w, + O(k%).

Thus the method is second order accurate. To discuss the stability we
linearize (3.14) and freeze coefficients, i.e. we consider

Upy1 — Up—1 = S(Alﬁn.,.l + A10p_1) + 2kBty, (3.15)
where A, B are constant matrices. The stability follows from
Theorem 3.3 Assume that
A1 +A;] <0, B=-B* |[kB|<L1-§,

then
8(|n1]? + 19a)?) < 2(|51 )% + |0]?)- (3.16)

Proof. Multiplying (3.15) by 9,41 + Un—1 gives us
- - k,_ - _ _
[5nt1]? = |Bn-1)? = E(vn+1 + ¥p-1, A1(Tns1 + Un-1))

4+ 2k(Vp+41, Bop) + 2k{0p_1, Boy)
S 2k<{’n+1y Bﬁn) + 2,‘:(511—1, B{’n%
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i.e.
Ln+1 = |1‘)n+1l2 + Iﬁnlz d 2k RB (’t)n+1, Bi}n)
[0nl? + |5n—1]2 — 2k Re (#n, Biin_1) = Ln.

7aN

Therefore
L,< L.

Observing that
(v, Bw) < §|B|(jv]* + |w|?)

(3.16) follows. O

The last theorem tells us that the combination of leap-frog and the mid-
point rule is stable, if the slow part is oscillatory (B = —B*). If this is
not the case, then the weak instability of the leap-frog scheme can cause
difficulties.

It is very desirable to prove stability of other combinations, for example,
the combination of the implicit Euler scheme with a Runge-Kutta method .
Also, it is important to investigate when such a combination automatically
determines the slow solution.

Richardson extrapolation. As in the previous section the method de-
pends only on the existence of an asymptotic expansion. Therefore it can
be used here.

3.4. Highly oscillatory solutions of linear systems

Highly oscillatory problems have been studied for a long time, and a large
number of perturbation techniques have been developed: multi-scaling, av-
eraging and the near identity transformation (see, for example, Bogoliubov
and Mitropolsky (1961), Nayfeh (1973), Hoppensteadt and Miranker (1976),
Kevorkian and Cole (1981), Neu (1980)). For the most part these tools are
difficult to implement numerically. We feel that effective numerical tech-
niques are only available for special problems. We will discuss such methods
in the next two sections.
In this section we consider linear systems

ey = A(t)y, 0<e<eg,
¥y(0) = wo. (3.17)
We make

Assumption 3.1 A(t),A~!(t) € C™ and their derivatives are bounded
independently of £. The eigenvalues of A are distinct and

Re A <.
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If one solves (3.17) by difference approximation, then one has to use a
time step k < €. We want to show that one can solve the system by analytic
means.

This assumption implies that there is a nonsingular transformation

S(t) = (81(t), ..., 8a(t)) € C=®, s,(t) eigenvalues of A,

varying on the slow scale such that

A1 0

S71AS = .. =: A.

0 An

Introducing into (3.17) a new variable y; = S(t)y gives us
edy/dt = (A+€eB)y;, B=-S"1dS/dt.

Now we can find a slowly varying transformation S; such that

A1+ €A 0
(I+eS1)"Y(A+eB)(I+€8;) = .. =: A+eA;.
0 An + €A1

The change of variables
1= (I+eS1)y:

gives us
dyz/dt = (A + EA1 + €2Bl)y2.

This process can be continued. Thus we can diagonalize the system to
any order of O(eP). Neglecting the O(eP)-terms we obtain scalar equations,
whose solutions can be written down explicitly. We have proved

Theorem 3.1 The solution of (3.17) can be calculated analytically to any
order in €.

If the eigenvalues change multiplicity, then difficulties arise. An initial
discussion can be found in Scheid (1982).
We consider now systems

dy/dt = A(t)y + F(t,e),
where A is slowly varying and F has the property that
t
| Fne)dn=0Ge).
For example, this is the case if

F =el/%g(t), g(t) slowly varying.
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By Duhamel’s principle we can write the solution as

y(t) = S,0u0) + [ S, 6)F () de,

where S(t,£) denotes the solution operator of the homogeneous differential
equation. It is a slowly vaying function of ¢, £. Therefore integration by parts

gives us
¢ 3 t £
[ seor©a=see [ Fma| - [*2HE [ rayand = o)

Thus F changes the solution by an O(g)-term. One can derive an asymptotic
expansion, if more about F is known.

Numerical methods based on these results are exploited in Amdursky and
Ziv (1977), Fatunla (1980), Gautschi (1961), Miranker (1981) and Scheid
(1982).

t

3.5. Highly oscillatory solutions of nonlinear equations

We start with a number of examples.

i
L= Syt
y(0) = wo. (3.18)
We can calculate the solution of (3.11) explicitly. Introducing a new variable
by
= ex (zt) 7]
Yy = exp c Y
gives us
7 = e ()
#0) = o (3.19)
Therefore
e . .
V= A ) - ]
/oﬂ2dt— ,\[exp(st 1],
ie.
j = 1 _ = Yo
5 Ko T Eeo (31
; i
= {1 - ;:10 [exp (l?t) - 1]} + O(e?). (3.20)

Thus the nonlinear term changes the solution only by O(e) in arbitrarily
long time intervals.
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It is also useful to calculate the solution in another way. (3.17) gives us
~ t ix g\ -
g-% = / exp (—6) §° d¢
0 €
e iA\ o 2 [F (i)\ ) oy
= —Fen(2¢) P+ 5 [ exe (T¢) o e
ie A\ .o -2 ] 2ie /* (2i)\ ) -3
3 [exp(st)y &) =0 + 5 | exp | —¢) 7L
The last integral can again be treated by integration by parts. Therefore

50+ Tep (S) 720) = o + T120) + O,
ie. . _
7=y {1 - 1—::yo [exp (%t) - 1]} +0(e?),

and we again obtain (3.18).
Now consider

y = 1%l-y-f-v, v = l,\?21)4-'!12- (3.21)

The change of variables

gives us
yl — exp (1(A2 ; Al)t) ~’ 1‘}/ exp (ﬁt) ~2

By (3.19)

S i ijA

=v+ Y el (—2t>

j=1

Therefore
i N s i
7 =exp (E(/\z - )q)t) v+ Z €’ exp (E[(] + 1) — Al]t) .

Jj=1
Ifvda— A #0forallv=1,2,..., then
§(t) = yo + O(e).
However, if vA2 = A1, then resonance occurs and

i(t) = {y(O) +ev1glt ifv > 1,
y y(0) + tuo if v =1.

Thus the solution is not bounded.
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Now we can discuss systems
i
y = Ay+PQ)
¥(0) = o, (3.22)

where P is a polynomial in y. Introducing new variables by

i .
Y =exp (EAt) ]

gives us
¥ = exp (—éAt) P [exp (E_At) ;i]] ,
50) = o (3.23)
The right-hand side of (3.22) consists of expressions
exp [ (S asy) ¢ p(a) (3:24)

where the a; are integers and p is a polynomial in y. There are two possi-
bilities.
1 7=3 a;\; =0 for some terms. In this case (3.22) has the form

7 = Qo(9) + (@), (3.25)

where Qg, Q)1 contain the terms with and without exponentials, respec-
tively. Our result in the last section tells us that we commit an error
of order O(g), if we neglect Q,. Thus y is to first approximation the
solution of

7 =@, #0)=uyo, (3.26)

i.e. in general §(¢) does not stay close to yq.
2 7=3% a;)\ #0 for all terms. Integration by parts gives us

§(t) = w+ ; /0 Cexp (%&) pr(§)d¢
= w-eX Tew (T6) p @l +1e 27 [ew (e) T e

| .
= wieX zew (7€) p@ls +ie X7 [ e () 5r0) e
(3.27)

The integrals in (3.26) are over terms of type (3.23) and therefore we can
repeat the previous arguments. If some of the terms are not of exponential
type, then they will in general be of order O(et).
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If all the terms are of exponential type, then we can use integration by
parts to reduce them to (at least) O(e?t).
We obtain

Theorem 3.2 Assume that for all integers a; the linear combinations
> a;A; do not vanish. Then

§=1yo+ O(e)
in time intervals 0 <t < T. T = O(e?) for any p.

There are no difficulties in extending the results and techniques to more

general equations
1
y' = —Alt)y + P(y:t).

Here A(t) is slowly varying and P(y,t) is a polynomial in y with slowly
varying coeflicients in time.

The numerical methods based on these results are exploited in Kreth
(1977), Miranker and Wabba (1976), Miranker and van Veldhuisen (1978)
and Scheid (1982).

8.6. Calculations of solutions, which contain both a fast and a slow part

One can solve these problems by brute force, i.e. use a time step k < .
If one instead wants to calculate only the slow scale, i.e. ¢ € k < 1, then
one has to combine analytic techniques with numerical methods. Very little
is known about how to do this, see however (Petzold, 1981) for a different
approach.

If the system has the form (2.1), splitting techniques have been used:
Assume that we know the solution at time ¢,,, then we calculate the solution
of

w®@®) = A1), ta<t<tn,
w(l)(tn) = w(tn)
at t = t,,1 to obtain w1 (¢,,1).
The next step is to solve

W) = ZABUE), tn<t<tun,

w(ty) = 'w(l)(tn+l)

analytically, using the results of Section 3.3. This gives us w(t,+1). It is not

at all clear what the accuracy of this procedure is. We believe it has to be

modified before it is generally useful, because in general the error is O(1).
Assume now that the system has the form (2.2). If the fast part of the
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solution is small, then by Theorem 2.2 the effect of the fast part on the slow
scale is one order of magnitude smaller. Therefore we can calculate the slow
part of the solution first, and then treat the fast part as a perturbation, i.e.
we have to solve

e(yF) = (A(t) +C1 (%, 45, 0)yF

by analytic techniques as described in Section 3.3. The next step is to
determine the effect of the fast scale on the slow scale. We believe that
progress can be made along these lines, but no results are available yet.

4. Partial differential equations
4.1. General theory

Let 0 < € < g¢ be a small constant, z = (z1,...,Zs) be a point in the real
s-dimensional Euclidian space R,, e; the unit vector in the z; direction and
u = (uM(z,t),...,u™(z,1))T a vector function with n components. We
consider systems

us = € 1Py(8/0zx)u + Py(u,z,t,¢,8/0z)u + F(z,t) (4.1)
with periodic boundary conditions
u(z + 2me;) = u(z), j=1,2,...,s
and smooth periodic initial data
u(z,0) = f(x). (4.2)
Here F(z,t) is a smooth function of z,t with derivatives of order O(1), and

the coeflicients of

8
Py, = ZA,-G/B:C,', Aj = A} constant matrices,
J=1

P = Z Bj(u,z,t,6)3/0x;, Bj = B} smooth functions of all variables,
=1
(4.3)

are real symmetric matrices.

We want to prove that the bounded derivative principle is valid. We follow
Browning and Kreiss (1982) closely. (See also Klainerman and Majda (1982)
and Kreiss (1980).)

Theorem 4.1 Assume that p time derivatives at t = 0 are bounded inde-
pendently of €. Then the same is true in a time interval 0 < t < T, where
T > 0 does not depend on e.
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Proof. We consider first the system
wy = Pi(w, z,t,e,08/0z)w. (4.4)
Let
(o) = [(wopdz, [ul? = (u,v)

denote the usual Lo-scalar product and norm. In the usual way we can
derive a priori estimates by constructing differential inequalities for

2 |Dlilwi? = 2 Re (D¥iw, DYI(Pru)), (45)

where j = (j1,...,7s), 13| =X ji, is a multi-index, and
DVly = &1 [0 ... & |8zl

(See, for example, Kreiss and Lorenz (1989).)

If we consider all expressions || DVlw||2 with |j] < [s/2] + 2, then we can
obtain a closed system of differential inequalities. The solutions of this
system are bounded in some time interval 0 <t < T, where T > 0 depends
on the initial data but not on . Thus we obtain bounds of the first [s/2] + 2
space derivatives. Higher order derivatives can then be estimated in the

same time interval.
Now consider the system (4.1). Corresponding to (4.5) we have

%uplflun2 = 2¢7! Re (DVlu, Py(8/8z)DVu) + 2 Re (DVlu, DV!(Pyu)).
(4.6)
Py is a first-order operator with constant symmetric matrix coefficients.
Thus
2 Re (DVlu, Py(8/8z)DVlu) = 0,

and we also obtain for u the relationships (4.5). Therefore we can estimate
all derivatives independently of € in the same time interval, where we can
estimate the derivatives Dlw. In particular, if we can estimate DVlw for
all times, then the same is true for u.

To obtain estimates of time derivatives we differentiate (4.1) with respect
to t. v = u, satisfies

v, = e 1 Py(8/8x)v + Py(u,z,t,€,8/8z)v + F.
Here F depends on z, t and on u and its derivatives. Therefore Re (v, Pov) =
0 implies
2ol = 26 Re(v, Po(®/6a)0) + (v, Prv) + (v, F)

constant X (||'u||2 + ”F1”2)-

IA
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Thus, if v(z, 0) is bounded independently of ¢, then v stays bounded as long
as the space derivatives stay bounded. Higher time derivatives are estimated
correspondingly. This proves the theorem. O

We will now make the connection with the theory for ordinary differential
equations. For simplicity we assume that the coefficients of P; are polyno-
mials in » and do not depend on z,t explicitly.

We have seen that for smooth initial data the solution of the differential
equation is smooth in space. Therefore we can develop it into a rapidly
convergent Fourier series

u(z,t) = Z (w, t) exp(i{w, z)) Z W;T;j. 4.7

w

Introducing (4.7) into (4.1) and neglecting all frequenmes with |w| > N gives
a system of ordinary differential equations

%ﬂ(w, £) = e~ 1Py (w)(w, £) + G (4, £). (4.8)

Py(iw) is a skew Hermitean matrix and therefore there is a unitary matrix
U(iw) such that

U*(iw)Po(iw)U(iw)=(R%“’) g), det || 0. (4.9)

Thus we can transform (4.8) into the form (2.2).
We will now formalize the process. We make

Assumption 4.1 There is a constant § > 0 such that for all w
IR (w)| < 671,
Ly consists of all functions
f=3Y fwyexpiw,z)), I If(W)f? < oo,
W
which can be expanded into a Fourier series. Let @ denote the projection
e I, 0\ A, . 2
f1=f =X 0G) ()0 w)explifw, 2))f(w).
w
Here I, is the unit matrix of the same dimension as R(iw), Q splits L, into
two subspaces L}, LI defined by
fI=Qfa fn (I Q)f’ f=fl+fn'

Note that ) commutes with Py, i.e. QPy = PyQ because

QPou Z U (iw) ( G g) 0* (1)U (iw) (R(lw) g )
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x U*(iw)a(w) exp(i(w, z))
= S 0Gw) (R((‘)“’) 8) 0* (i) () exp(iw, 7))
3" 0 (iw) (R((i)“’) g) 0 ()0 (iw) (’5' g)

x U*(iw)i(w) exp(i{w, z))
= PyQu.

Also,

Pul! = Po(I—Q)u“
- 206w (R(é“’) g) [1 - (% g)] 0 (iw)i(w) exp(i(w, 2))
= 0.

We can define the inverse of Py on L} uniquely by
~1.1 _ LI R‘l(iw) 0) Pkl A~ .
Pyt = 3 0iw) (78 0) o (wyitw) explitw, 2,

and (4.9) gives us

1Pyl < 67 - (4.10)

Using the projection @, we can now write the system (4.1) in the form
W = e 1Pl + (Py(u,8/8z)u)! + F, (4.11a)
ul!' = (Py(u, (?/(’):):)u)II +FY u=u (4.11b)

which is the generalization of (2.2) to a partial differential equation.

We can now show that if u is slow to order p, then u! is determined by
u!l up to terms of order O(eP). Bu/dt is bounded independently of ¢ if and
only if

PouI = 0(&'),
hence
ol =eul, ul=0(1), (4.12)
i.e. u has to first approximation no component in L}. Therefore, to first
approximation, the solution to our problem is given by
ul=0, ul= (P (v, 8/0z)u)! + FII,

Differentiating (4.11) with respect to ¢ and assuming that (4.12) holds gives
us

u, = e 'Pul+0(1)
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_ lp, (Pou} + (Py(u", 8/0z)ul)! + FI) +0),
ur = O(1). (4.13)

Therefore the second time derivative is bounded independently of ¢ if and
only if
Pyul + (Py(u!, 8/8z)u))! + FI = O(e).

Thus ! is determined by u!! up to terms of order O(e2). This process can
be continued, and we obtain the desired relation between u! and w!l.

As in Section 2 we can also derive the asymptotic expansion by the iter-
ation

@™ )] = e R™) + (P(u™,8/8z)u™) + FT, (V) =0,
@I = (P(u™,8/8z)u™ + FI, n=0,1,2,.... (4.14)

It again gives us the relationship between u! and u!l. For meteorological
applications there are many papers, which describe how to obtain this re-
lationship in practice. (See, for example, Kasahara (1982), Leith (1980),
Machenhauer (1977).)

One can generalize the results considerably. However, the theory becomes
much more complicated, if Py = Py(z,t,0/0z) depends on z,t or if one
wants to treat the initial boundary value problem. Details can be found in
Browning and Kreiss (1982), Kreiss (1980) and Tadmor (1982). Numerical
methods are discussed in Guerra and Gustafsson (1982), Gustafsson (1980a),
Gustafsson (1980b), Gustaffson and Kreiss (1983).

4.2. The wave eguation
We cousider in this section the wave equation written as a first-order system

Eur = ((1) (l))um+F

u(z,0) = f. (4.15)
Here u, F, f € C™ are vector-valued 27-periodic functions. (4.15) is of the
form (4.3) with
Piw)=i(? Nau, P=0
0 1 0 1 1 =u

Thus the theory applies.
(4.15) implies

2 2%
/ wde= [ Fda,
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- /(;2" u(z,t)dr — /02” u(z,0)dz = é/ot‘/ozr F(x,€)dz dé.
If
/0 " pdz = 0(1),

then the mean value of the solution becomes unbounded for € — 0. For
simplicity we assume that

2 2
/ f(z)dz =0, / F(z,8)dz = 0. (4.16)
0 0
Then \
/O " u(z,t)dz = 0. (4.17)

‘We shall now derive the asymptotic expansion. We proceed in the same man-
ner as for the ordinary diferential equations. u has one derivative bounded
independently of ¢, if

10
This suggests the substitution
u = U1 + o, (4.18)

(0 l)uz+F=(’)(5).

where g is the solution of

0 1 ) 2
=_F, dz = 0.
( 1 0 Pox 0 %o

Introducing (4.18) into (4.15) gives us

0 1 2n
EUupr = (1 0) Ulxr — €P0t, fo uy dz = 0,

u(z,0) = f(z) - vo(z,0). (4.19)

(4.19) is of the same form as (4.15) with the forcing reduced to O(¢). There-
fore we can repeat the process and we obtain the slow solution

p—1
uS =Y "elp; + O(eP).

i=0
The fast part uF is the solution of

27
evyf ((1) é)vf, ‘/0 vwdzr =0,

v¥(z,0) f(z) - v%(z,0), (4.20)

i

Il
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ie.
vF(z,t) = ;aj (i) exp [ij (.1:+ 2)] +b; (}1) exp [ij ( - 2)] ,
where the a;,b; are determined by the initial data.

In applications the equations often do not appear as symmetric hyperbolic
problems. As an example we consider instead of (4.15)

(), = (& 0) (). (Fe)

u(z,0) = f, p(z,0)=g. (4.21)
We can symmetrize the equations by introducing a new variable
p=ep
and obtain
(3), = 2( o) (5)+ ()
7/, e\1 0/\p/), \e'G)’
u(z,0) = f, p(z,0)=c¢g, (4.22)

which is of the same form as (4.15). Therefore we can again write down the
asymptotic expansion of the slow part of the solution and obtain
u$ =l +eplV +-, FF=epl +e2of +- -,

i.e. we also have bounded asymptotic expansions in the original variables
u,p = €~ 1p. The fast part of the solution is again determined by the homo-
geneous equation (4.20) with initial data

uF(xa 0) = f(x) - uS(z., 0)) ﬁF(za 0) = Eg(z) —ﬁs(x’ 0)
Now we assume that the data have not been initialized. Then

uF (z,0) = 0(1), 5% (z,0) = 0O().

However, at later times energy from uF will be transferred to ¥ and there-
fore

uF(z,t) =0(1), 5 (z,t) = O(1).
Then we obtain in the original variables
uF(z,t) = O(1), p(z,t) = pF(z,t) = O(™Y),

and the amplitude of p will be amplified by a factor e ~1.
For moderate values of ¢ this is not a problem. However, if € becomes very
small, it can cause a lot of trouble in numerical calculations. For example:

1  If the data are initialized analytically but the problem is solved numer-
ically, then the initialization of the difference approximation is, due to
truncation errors, different from the analytic initialization.
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2  Rapid time changes in F can trigger large waves on the fast scale.
3  If € is very small, then rounding errors can also cause difficulties.

Numerical methods. If one is only interested in the slow solution, then
using the asymptotic expansion or Richardson extrapolation are efficient
methods. (Observe that one uses Richardson extrapolation with moderate
values of € and therefore one can also treat nonsymmetric systems.)

If one is interested in both the fast and the slow part of the solution, then
one can use asymptotic expansion for the slow part of the solution and solve
(4.20) analytically.

5. Applications
5.1. Low Mach number flow

A slightly simplified version of the Euler equations for low Mach number
flow in two space dimensions is given by

u;+ (u-V)u+Vp F
M(pi+(u-V)p)+V-u = G (5.1)
with initial data
u(z,y,0) = f(z,y), p(z,y,0) = g(z,y). (5.2)
Here 0 < M2 « 1 is the Mach number and

u = (u(z,y,t),v(z,y,t), p=pz,y,t)

denote the velocity field and the pressure, respectively. We are interested in
27-periodic solutions.
We can also write (5.1) in component form

U v 0 M1 u v O 0 u Fy

(v) +( 0 = O ) (’U) +(0 v M‘l) (v) = (Fz).

), \M™' 0 u p/, \0 M1 b/, g
(5.3)

We have introduced
p=Mp (5.4)

as a new variable such that the system is symmetric hyperbolic. Thus (5.1)
has the same difficulties as (4.21).
The symbol of the large part

0 0 Wy
Piw)=M1{ 0 0 iw (5.5)
iwl iUJQ 0

has rank two. The general theory tells us that there is one slow variable. In
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the general theory the slow variable can only be defined via Fourier trans-
form. However, in this case we can also identify it in physical space. It is
the vorticity V x u =: v; — u,, because differentiating the second equation
of (5.3) with respect to z and the first with respect to y and subtracting
them gives us

& +ubs + v€y + (uz + vy = Fop — Fyy. (5.6)

The fast variables are the pressure and the dilutation V - u =: uz 4 vy.

We will now describe the results in Kreiss et al. (1991). (See also Klain-
erman and Majda (1982).) We derive an asymptotic expansion of the slow
part, starting from (5.1). If the derivatives are bounded independently of
M, then the leading term must satisfy

U+ (U-V)YU+VP=F

v-u=@Gg (5.7
with initial data defined by
V-U(z,y,0) = G(z,y,0), V xU(z,y,0)=V xf(z,y). (5.8)
Defining new variables by
u=U+u, p=P+9p, (5.9)

we obtain from (5.1)
U+ (U-V)u'+ (- V)U+(u-V)u' +Vp' =0

M%(pi+(U-V)p + (- V)P + (u'- V)P)+V o =MG (510)

with
Gi=—-(p:+(U-V)P).
First we determine the slow part of u’,p’ and write
u = MU, +v', p'=M32P 49, (5.11)

where

Uy + (U . V)U1 + (U1 . V)U +VP =0
V.U =G (5.12)

The initial data for (5.11) are given by
V- Ui(z,y,0) = G1(z,9,0), V xUi(z,y,0) =0.

Now we introduce u’,p’ as new variables into (5.10) and repeat the proce-
dure. We obtain

Theorem 5.1 We can expand the slow part of the solution of (5.1) into a
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series
v = U+ MU+ -+ M*Uj+up = UY 4 uy
p = P+M?Pi+---+ M2P +pg =PV 4 pp,

where Uj, P; satisfy linearized incompressible equations and their deriva-
tives are bounded independently of €. The remainder up, pr are the solution
of

up:+(UD - V)up+(ur - V)UD +(ug - V)up+Vpr=M4F,
Mm? (PRt"‘(U(l) - V)pr+(ur - V)PO+(up - V)PR) +V - ug=M3+2G;.
(5.13)
The initial data
ug(z,7,0) = f(z,y) - UD(z,4,0), pr(z,4,0) = G(z,,0) — PO(z,y,0)

satisfy
V x ugr(z,y,0) =0.

One can prove (see Kreiss et al. (1991))

Theorem 5.2 In any finite time interval 0 <t < T
V x up(z,y,t) = O(M).

Thus ug, pr represent the fast part of the solution.

To discuss their behaviour and to simplify the notation we introduce new
variables by

r=t/M, ¢=Mpr, v=ug, UV=U, pPh=p
We also neglect the forcing. Then (5.13) becomes
Ve + M((U-V)v+(v-V)U)+Vg=0
¢+ MU -V)g+ M3(v-V)P+ V- -v=0,
v(z,y,0)=f(z,y) — U(z,4,0), q(z,y,0)=M(G(z,y,0) - P(z,y,0)).

(5.14)
If we neglect terms multiplied by M, (5.14) becomes
vr+Vqg = 0
qr + V V. = 0. (5.15)

(5.14) can be rewritten as the wave equations for g and the dilutation V -v.
Here we see again that the amplitude of the fast waves are amplified by
the factor 1/M because pr = (1/M)q. I |v(z,y,0)| = 1, then ¢ grows on
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the fast time scale from O(M) to O(1), i.e. pr becomes O(1/M). Large
fast waves can only be avoided, if v(z,y,0) = O(M). Since the vorticity is
O(M), this can only be achieved, if the dilutation V - v(z,y,0) = O(M).

To solve this problem numerically we can use the asymptotic expansion. If
we only want to determine the slow solutions, then we can also use Richard-
son extrapolation (see Johansson (1991)). If we are also interested in the
fast part of the solution, then we have to solve (5.14). Here one should use
(5.15) locally, because we can determine its solution analytically.

We have only discussed the periodic problem. However, one can also treat
the initial boundary value problem (see Kreiss et al. (1991)).

5.2. Atmospheric motions

In this section we consider three-dimensional atmospheric motions and dis-
cuss results presented in Browning and Kreiss (1986, 1987). The correspond-
ing results for oceanographic flows can be found in Browning et al. (1990).
In Cartesian coordinates x,y, z are directed eastward, northward and up-
ward, respectively, and the Eulerian equations have the form (see Kasahara
(1974))

ds/dt =0,
d/dt =38/0t +u d/0x + v 8/dy + w 8/0z,
dp/dt + vp(uz + vy +w;) =0, =14,
pdu/dt +p, — fpv =0,
pdv/dt+py + fpu=0, p=sply,
pdw/dt + p, + pg = 0. (5.16)
Here s is the entropy, p the pressure, p the density, u,v,w the velocity
components in the z,y, 2z directions, respectively, and g ~ 10 m s~2 the

gravity acceleration. We make the S-plan approximation, i.e. the Coriolis
force f is given by

f =2Q(sinp + v/r cosbp), 2Q=10"%s"!, r=10"m, (5.17)
where r is the radius, Q the angular speed for the earth, and 8¢ the latitude
of the coordinate origin.

We have to introduce scaled variables before we can apply our theory.
We change the variables in such a way that the variables and their first
derivatives are of order O(1).

z=Lix', y=Lsy, =z=Dy, t=T¢,
u=Ud, v=Vv, w=Wu'

(5.18)

Density and pressure can be written in the form

p=Po(po(2) + S19’), p=Ro(po(2) +S1/), 0<S1 <1, (5.19)
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where
PoBpo/8z + gRopo = 0,
Pp=10°kgm 152 Ry=1kgm™3
Equations (5.19) express the fact that a number of digits of the pressure

and density are independent of z and y and that p and p are to the first
approximation in the hydrostatic balance. Equations (5.18) also imply that

s = RoPypo(2)(o(2)) "/ 7(1 + 516 /p)(1 + 519/ [po) /"
= RoP; "so(2)(1 + 515,
s0(2) = po(2)(po(2) ™7, ' =p'/po— (1/7)p [P0 + O(S1). (5.20)
We assume that the scales in the z,y directions are the same, that du/dt

and dv/dt balance the horizontal convection terms, and that the Coriolis
force has a strong influence. This leads to the following relations:

U =V, Li=Ly=1L,
UT/L = 1, 29T = S,Py/(RoU?). (5.21)
These relationships are not valid for special types of motions like jet streams,
ultralong waves and small-scale problems. For the treatment of these cases

we refer to Browning and Kreiss (1986). Introducing the scaled variables
into (5.16) gives us

4+ SIS+ s =0,

dp’ Sip

pr + 57 po [ (1 + T) (uz + vy + Sow,) + Sop(2)w’| =0,

((ii—’l:,‘l—Sg[ (1+S;:) /—f'v'] =0,

-1

3—;’,’ + S3 [p (1 + 5;—0) Dy +f’u'] =

dw’ 1 S1p' ' —lapy s /

55 51 Sao (1 t ) 2 =7 B(2)p’ + Sspos’ + O(S1)) =0,

(5.22)
where
P(2) = (Inpp)z, 8§(z) = (Insg),;

typically,

Fr—13, -3<F<—1;
d/dt = /8t +u' 8/8x" +v' 8/0y' + Saw'’ 8/87';
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and the parameters S; are given by
Sy = D7ITW, 8§3=2QT,
Sy = TPy(DRyW)™!, S5=gDP;'R,. (5.23)
We now choose the parameters according to the so-called large-scale dynam-
ics:
L=10m, D=10"m, U=V =10ms™}, §;=10"2, W=10"2ms ..
(5.24)

Introducing these values into (5.23) and (5.24), we obtain, dropping the
prime notation,

% +3(zw = 0,
%%+uw+vy+51’w =0, e=107",
ei—?+p§1pz—f’f = 0,
eyt fu = 0
posﬁd_w —~L*p+pgs = 0.

dt
Here
d/dt =9/8t +u 8/dz + v 8/dy + ew 8/8z,
Lw=w, +77'p(z)w, L*p=-p;+7 "6(2)p.
For simplicity only, we have neglected terms of order O(S;). Also, by (5.17),

I = fo+eBy.

We will only consider the mid-latitude case fg =~ 1.
For ease of discussion we simplify the equations slightly by replacing

§(z) > -1, (o) t—>1, f-1, lw—-w, p—1 Lp—p,

(5.25)
and obtain

ds

x v =0
dp
sza—f—ux—i-vy-}-ewz = 0,
sd—u+ -v = 0
dt p:t - b}
dv

E—+py+u = 0,

dt
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dw
Tt
Here we have replaced £° by 7, and we think of 7 as another small parameter.

We will now discuss the initialization. The first time derivatives are
bounded independently of ¢, if

+p.+s = O. (5.26)

p:+s=0(n), (5.27a)
pytu= 0(5)1 Pz —v= 0(5)7 (527b)
uz + vy + ew, = O(e?). (5.27¢)

If we replace O(n) and O(¢) by zero in (5.27a) and (5.27b), then the resulting
equations are called the hydrostatic assumption and geostrophic approzrima-
tion, respectively.

The second time derivatives are bounded independently of ¢, if

%(”’ +35) = O, (5.28)
%("v +u) = 0(e), %(pz ~v) = O(e), (5.28b)
%(uz + vy + cw;) = O(e?) (5.28c)

(5.28) gives us

szi(llz+s) = g2 (9}2) —e:"’H1+e29
& ,

dt dt
= (up +vy +ew,;), + 2w — 2Hy
= O(e%n), (5.29)

where
Hy = u,ps + v.py + ew,p, = u,v — vu+ O(e).

Thus (5.28a) gives us an improvement of (5.27c). If we replace the O(en)
term by zero, then the resulting relation is called Richardson’s equation.
Correspondingly, (5.28b) and (5.28¢c) lead to improvements in (5.27b) and
(5.27c¢), respectively.
The primitive equations, that are often used in weather prediction models,
are given by

ds

a v =0
du
E=—+p:+u = 0,

dt

e@+ -v =0
a T T

p:+s = 0,
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Their mathematical properties are discussed in Browning and Kreiss (1985)
and Oliger and Sundstrom (1978).

Instead of pursuing the initialization to make more and more time deriva-
tives bounded independently of ¢ it is easier to achieve this by iteration. We
shall first derive a set of equations, which will determine the slow solution
to order O(e).

Ler £ = v; — uy denote the horizontal vorticity and use the notation

95 _ 5/0t +u )0z + v 8/8y.

dt
(5.27) gives us the balance equation
Dop =E+0O(), Ay =08%/0x% + 8%/8y°. (5.30)
Differentiating the horizontal momentum equations results in
dpé

5(—&— +&(us + vy)) + ug + vy = O(e2).

Therefore, by (5.27c),
dué

The first equation of (5.26) tells us that
w, = dEStE + u,8; +v;8y + O(e),

i.e. by (5.27a) and (5.27b),

i—}:(ﬁ —8z) = U8+ 8+ O(€)

= —UyPgr — VaPy, + O() = O(e). (5.32)
By (5.30) and (5.27c) we can also write (5.32) as
dg
EAP = O(e).
Therefore the slow solution satisfies to a first approximation
dy
—Ap = 0
dt p b
pz+s = 0, py+tu=0, p,—v=0,
dys

Higher order approximations are obtained by iteration.

Remark. If we had not made the simplification (5.25), then (5.33) would
be slightly more complicated. It would still be a well posed problem.
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We have assumed that we can apply our theory. We will now discuss this
question. We can symmetrize the equations by introducing new variables

Jgp=ﬁa ﬁw:u’;,

and obtain
ds 1 .

— — — — 0,

i s
1 1
+ an(uz + 'Uy) G+ —w, = 0,

VET
du 1

a‘f‘eT/zpz_gv
dv 1 . +1 - 0
@ Taphtt T 5

dw 1 1

Y —p+—=s = 0, (5.34)

dp
at

where now
(5.35)

Therefore our theory applies, provided

€
— < constant , (5.36)
f

otherwise the term (¢/,/n)w 0/0z becomes large. We shall assume that
n =¢€>. (5.37)
In Browning et al. (1990) we have proved

Theorem 5.3 Assume that (5.26) with 7 > 2 has a solution with deriva-
tives bounded independently of e. We commit an error of order O(e?2), if we
change 7 to €2 and solve the new system with the same initial data.

Thus we can use the system (5.26) with 7 = £2 to obtain the desired slow
solution up to terms of order O(e2), provided it exists. Again we can use
Richardson extrapolation to approximate it to higher order.

The question, whether for 77 < £2 the system (5.26) has slow solutions, is
not clear. Numerical calculations seem to indicate that it is so. However,
if one linearizes (5.26) around a slow solution U, V,..., then the linearized
equations are unstable, if the sheer U, V, is large compared with €/,/7, i.e.
if we locally freeze the coefficients, then there are waves, which grow like
exp(at), a = (|U,| + |V;|)e/\/n. Further investigations are necessary.

There are other applications. For example, in Browning and Kreiss (1982)
some problems in plasma physics are discussed, in Browning et al. (1980) and
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Browning and Kreiss (1982) the shallow water equations are treated and in
Raviart (1991) approximative models of Maxwell’s equation are investigated.
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